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S
uccessful isolation of graphene1 and
subsequent experiments that reveal
its special properties2,3 have generated

excitement to explore the novel properties
of the two-dimensional (2D) crystal from
various disciplines. Advances in synthesis
and experimental techniques enable the
finding of other 2D crystals4 and the artifi-
cial fabrication of multiply stacked struc-
tures.5 Often, the stacking structures lead
to very unusual electronic properties differ-
ent from those of constituent 2D crystals
depending on how they are piled up. Among
them, bilayer graphene (BLG), which is a
stacked structure of two single-layer gra-
phene (SLG) sheets, is unique in electronic
structure and exhibits colorful variation in
low-energy states when its layer stacking is
changed. The in-plane three-fold rotational
and mirror symmetries and the decoupling
of strong σ and weak π bondings of carbon
atoms authorize the uniqueness of gra-
phene systems. As such, the interlayer cou-
pling in BLG, while a weak van der Waals
type, produces interesting variations in low-
energy band structures upon changes of
stacking geometries. For example, its low-
energy states in the Bernal-stacked pristine
form6 have quadratic energy bands but
change to have linear bands when there is
a rotational stacking fault.7�9 Also, a sensi-
tive electronic topological transition is also

predicted for sliding systems.10�12 Interplay
of the interlayer interaction, the electron�
phonon coupling, and the stacking fault by
layer slidings are thus expected to produce
drastic changes in its low-energy properties.
Control of its electronic property is also
enabled by manipulating such changes.
Recently, an epitaxially grown BLG on the

vicinal surfaces of silicon carbide showsmis-
alignment between two graphene layers
exhibiting a complex nature of its electronic
structures.13 Moreover, recent experiments
on CVD bi- and trilayer graphene also reveal
possible misaligned layers at the domain
walls between two ideally stacked graphene
systems.14,15 Immediate questions are how
such structural variations are reflected in
spectroscopic features and whether the
misalignment of layers can be detected or
not. Raman and infrared (IR) spectroscopies
have proven to be powerful nondestructive
methods to study physical and chemical
properties of 2D crystals.16�18 Physical pro-
perties of graphene under various con-
ditions such as doping ormechanical strains
have been verified using such tools.16�20

In consideration of the rapid progress of
research in this field,10�15 comprehensive
analysis of the spectroscopic features of slid-
ing BLG will provide key information on the
stacking geometry, the electron�phonon
interactions, and low-energy excitations.
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ABSTRACT We study the variations of electron�phonon coupling and their spectroscopic consequences

in response to the sliding of two layers in bilayer graphene using first-principles calculations and a model

Hamiltonian. Our study shows that the long wavelength optical phonon modes change in a sensitive and

unusual way depending on the symmetry as well as the parity of sliding atomic structures and that,

accordingly, Raman- and infrared-active optical phonon modes behave differently upon the direction and

size of the sliding. The renormalization of phonon modes by the interlayer electronic coupling is shown to be

crucial to explain their anomalous behavior upon the sliding. Also, we show that the crystal symmetry

change due to the sliding affects the polarized Stokes Raman scattering intensity, which can be utilized to

detect tiny misalignment of graphene layers using spectroscopic tools.
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In this paper, we study long wavelength optical
phonon modes responsible for Raman and IR spectra
when two layers of BLG slide next to each other.
We investigate how the tiny atomic misalignment
between two layers changes its phonon frequencies
and spectroscopic spectrum using first-principles cal-
culations. It is found that the degeneracy of IR-active
modes is immediately lifted by the sliding and each
mode changes separately depending on sliding geo-
metries. Unlike the behavior of IR modes, the fre-
quencies of doubly degenerate Raman-active optical
phonons do not change at all in all sliding circum-
stances. Such unconventional optical phonon split-
tings originate from the difference in their frequency
renormalizations due to interlayer couplings, which is
confirmed by our effective model Hamiltonian calcula-
tions. Moreover, we demonstrate that, owing to its
changes in the crystal symmetry, nonresonant Stokes
Raman scattering intensities associated with Raman-
active phonons exhibit a strong polarization depen-
dence so that they can be used to detect sub-angstrom
misalignment between two layers in sliding BLG.

RESULTS AND DISCUSSION

Figure 1 illustrates the sliding geometry of graphene
layers in BLG. When the sliding vector dB is along �δB1,
the BLG gradually transforms from its pristine form of
AB stacking (designated as AB-BLG) to AA stacking
(dB =�δB1) in which all carbon atoms are right on top of
each other (AA-BLG). For the sliding along þδB1, the
AB-BLGbecomesupside-downAB-stackedBLG (BA-BLG).
Equivalent layer stackings are arranged by other sliding
vectors along either (δB2 or (δB3 direction. Also, a
combination of the sliding vectors is possible, as drawn
in Figure 1a.
Among the phonon modes at the Γ-point in

the Brillouin zone (BZ) of AB-BLG, high-frequency Eg

(Figure 1b) and Eu optical modes (Figure 1c) are re-
sponsible for the Raman G-band and IR peak, re-
spectively.17,18 The in-plane atomic motions in the
upper and lower layers (Figure 1b,c) are in-phase and
out-of-phase for Eg and Eu modes, respectively. These
modes are doubly degenerate as denoted by thick red
arrows for longitudinal optical (LO) mode and by blue
ones for transverse optical (TO) mode, as shown in
Figure 1b,c. Our calculated phonon frequencies of Eu
and Eg modes in AB-BLG are 1592 and 1585 cm�1,
respectively (Figure 2), in good agreement with pre-
vious studies.21�23 As these two modes involve the
interlayer interaction as well as the crystal symmetry,
the sliding motion of two graphenes will imprint its
effect on these modes.
First, we find that the sliding in AB-BLG lifts the

degeneracy of optical phonon modes immediately
with the splitting size depending on both the sliding
geometries and the symmetry of the phonon modes
(Figure 2). The degeneracy is recovered when the

Figure 1. (a) Vectors δBi (i = 1�3) connecting the nearest-neighbor carbon atoms in each layer. The sliding vector in the upper
layer is denoted by dB. From left to right, top views of BLG for dB = 0, 1/2δB1, �1/2δB1, and 1/4(δB1 � δB2). In-plane atomic
displacements for (b) Eg and (c) Eu optical phonons, respectively. For each phononmode, doubly degenerate atomicmotions
are denoted by red (LO mode) or blue (TO mode) arrows with carbon atoms of the same color moving in the same direction.
Vertical dashed lines are guides for the eyes to the nearest interlayer carbon atoms (A2 and B1).

Figure 2. Variation of optical phonon frequencies as a
function of sliding distance and direction. Red filled circles
(blue filled rectangles) are frequencies for IR-active LO (TO)
modes, and black empty circles and empty rectangles
denote two Raman-active modes. The sliding vectors are
shown in the bottom abscissa and corresponding stacking
geometries in the top. The R-stacking (dB = 1/2δB1) and
β-stacking [dB=�1/2δB1 or 1/2(δB1� δB3)] geometries are shown
in the second and third panels of Figure 1a, respectively.
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sliding ends up in AA-BLG (Figure 2). This finding is
readily understood from the crystal symmetry of
AB- and AA-BLG that guarantees the degeneracy of
TO and LO modes for Eu and Eg phonons. However,
Eg and Eu phonon modes exhibit completely different
responses to the sliding because of their atomic
motions (one in-phase and the other out-of-phase).
The frequencies of IR-active Eu phonon modes are
apparently split into two modes upon sliding, with a
strong dependence on the sliding vectors (Figure 2).
On the other hand, the frequencies of Raman-active Eg
modes are seemingly unaffected at all by the sliding
motion, although the exact degeneracy does not hold
any more as Figure 2 illustrates. We observe that the
splitting between TO and LO phonons is as large as
20 cm�1 for the Eu mode but no more than 1 cm�1 for
the Eg mode.
To understand the intriguing behavior of optical

phonons upon the sliding, we construct a minimal
model of the phonon modes in sliding BLG. From our
ab initio calculations for in-plane atomic displace-
ments, we find that the interlayer ion�ion interaction
energy changes very little (less than 10%) compared
with the interlayer ion�electron interaction. So, addi-
tional force constants that account for the renormali-
zation of in-plane phonon frequencies by the interlayer
electronic hopping are sufficient to include into the
conventional force constant model. Within the harmo-
nic approximation, the phonon frequency of BLG
(ω( for Eg(u) mode) at the Γ-point can be expressed
as ω(

2 = ωG
2 þ ξ(/mc, where ωG is the frequency of E2g

phonon modes of SLG and ξ( is the effective force
constant for the Eg(u) phonon renormalization owing to
the interlayer electron hoppings in BLG (mc = 1.99 �
10�23 g is the mass of the carbon atom).24 The Hamil-
tonian for BLGwith a sliding vector dB = (dx,dy)

10�12 can
be written as Htotal = Hintraþ Hinter, where the intralayer
Hamiltonian is Hintra = ΣRΠpBcBR

† (pB)cAR(pB) þ (h.c.) and
interlayer interaction Hinter = πpB(dB)cB1

† (pB)cA2(pB) �
γ1cA1

† (pB)cB2(pB) þ (h.c.). Here cAR(cBR
† ) is an annihilation

(creation) operator for electron at site AR (BR) in the
upper and lower layers (R=1,2).ΠpB = (3act)/(2p)(pxþ ipy)
and πpB(dB) = (3acγ3)/(2p)[px þ ipy � β(dy � idx)] where
t = 3.0 eV is the nearest-neighbor (nn) intralayer
hopping constant, ac the intralayer nn distance,
γ1(=t/10) and γ3(= γ1) the nn and the next nn inter-
layer hoppings, respectively, and β∼ ac

�2.10�12With an
intralayer electron�phonon coupling constant of
g = 58 eV/nm,25,26 the Hamiltonian with the phonons
can be described by changing ΠpB to ΠpB(u) = (3act)/
(2p)(px þ ipy) þ 3ug for the LO mode and to ΠpB(u) =
(3act)/(2p)(pxþ ipy)� 3iug for the TOmode.25,26 Here u
is the amplitude of the E2g phonon modes in SLG, and
then the atomic displacements at A and B sites in the
layer R are given as uBAR = �uBBR = uŷ (=ux̂) for the LO
(TO) mode (Figure 1b). With γ1(3)(u)= γ1(3)þO (u2), ξ(
is obtained from the energy variation with respect to

the atomic displacement

ξ( ¼ 1
2
gvgs
Sc

D2

Du2

Z
Sc

dpB
2
[E(

pB
(u) � ES

pB
(u)] (1)

where E(
pB
(u) ¼ �[jΠpB(u )j2þjΠpB((u)j2þjπpB(dB)j2þ

γ21þ2jΠpB(u)ΠpB((u)þγ1π
�
pB
(dB)j]1=2 and ES

pB
(u) = �2|ΠpB

(u)|. E(
pB
(u) corresponds to the energy of sliding BLG

with Eg and Eu optical phonon modes, respectively,
which can be obtained by direct diagonalization of
Htotal; gv = gs = 2 are the valley and spin degeneracy,
respectively, and Sc =πpc

2 = (22π2)/(33/2ac
2) is half the BZ

area accounting for the valley degeneracy.24 In eq 1,
the intralayer electron�phonon contribution [ES

pB
(u)] of

two graphene layers is subtracted from the energy of
BLG with phonons [E(

pB
(u)] to obtain the renormalized

interlayer force constant only since ωG is assumed
to already be the renormalized intralayer phonon
frequency.
The interlayer force constant ξþ becomes negligible

for Eg phonon modes regardless of sliding (i.e., ωþ =

ωG). This can be demonstrated easily by shifting pB to
pB� (2pug/(act),0) and pþ (0,2pug/(act)) for LO and TO
Eg modes in eq 1, respectively. So, this explains the
reason why sliding does not change the frequency of
Eg modes. In contrast, for Eu modes of AB-BLG without
sliding, we find ξ�= (3

√
3g2γ1)/(πt

2) so thatω�(dB=0)�
ωþ = (1/2ωG)(3

√
3g2γ1)/(πmct

2) ∼ 10 cm�1 in a
good agreement with our calculation in Figure 2. With
sliding along dB = RδB1 (|R|, 1), we find thatΔω�(dB)�
ω�(dB) � ω�(dB = 0) � - (Λ/2ωG)(g

2γ1γ3)/(mct
3)R for

the LO (TO) Eu mode (here Λ is a dimensionless
constant), which shows the splitting of two degenerate
IR-active modes upon sliding, as shown in Figure 2.
These calculations explain the different responses of
Raman-active and IR-active phonon modes in slid-
ing BLG.
Having understood the origin of the anomalous

optical phonon splittings upon sliding, we investigate
their spectroscopic consequences. Our calculations
readily indicate that the sliding systems have different
IR reflectivity and Raman spectrumwhen it is placed on
insulating substrates with top or bottom gates. The
single Fano-like IR spectra of gated BLG18 will turn into
the double-peak spectrum upon sliding because of the
splitting in Eu phonon frequencies. Also, its anomalous
splitting in the Raman G-band25�28 due to mixing
between Eg and Eu modes will be affected by sliding.
The splitting of the Raman G-band (or spectral transfer
between opposite parity optical phonon modes) of
gated BLG is known to originate from the inversion
symmetry breaking by the gate electric field.25,26

Therefore, we expect that the splitting in the Eu mode
upon sliding will generate a more complex Raman
spectrum in the gated structure (e.g., a three-peak
structure). While the gated structure is the most
straightforward way to observe the sliding-induced
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splitting of optical phonons, more generic ways are
desirable of detecting tiny sliding on arbitrary sub-
strates without the need for heavy doping using the
field-effect transistor structure. We present below that
conventional Raman techniques with polarizers can
indeed detect sub-angstrom atomic misalignment by
sliding.
The position of the Raman G-band of sliding BLG

does not change at all for all sliding configurations, but
the change in the crystal symmetry produces very
interesting movement of the Raman intensity. In order
to calculate thenonresonantStokesRaman intensityof the
G-band,weused thePlaczekapproximation for theRaman
intensity (I) as I � dσ/dΩ = Σν=1,2|ei 3 Rν 3 es|

2.29�31 Here
Rν is the Raman tensor, ei and es are the polarization of
the incident and scattered lights, respectively.29�31

Rν associated with the doubly degenerate Raman-
active phonon modes is proportional to the Raman
susceptibility Rij

ν, which is defined as Rij
ν = ΣIk(∂χij)/

(∂rIk)uIk
ν . Here, uIk

ν is the νth phonon eigenvector of
the Ith atom along the k direction, and χij is the
electric polarizability tensor (i,j,k = x,y, as we neglect
the irrelevant z component).29�31 We directly calculate
the derivative of χij with respect to the atomic displa-
cements corresponding to the νth modes. Assuming
an incident light with an energy of 2.41 eV, calculated
Raman tensors for various sliding geometries are sum-
marized in Table 1 together with corresponding crystal
symmetry groups and vibrational symmetries.32 Our
calculations of Raman tensors for AB-BLG and AA-BLG
reproduce the well-known results with Eg and E2g
symmetries.32,33 Upon sliding, changes in the crystal
symmetry produce correspondingly distinctive Raman

tensors. With ei = es = (cos θ, sin θ), the polarized
Raman intensity for AB-BLG is given as I = |c(cos2 θ �
sin2 θ)|2 þ |2c sin θ cos θ|2 � IAB so that the intensity
does not depend on the polarization angle θ (Figure
3a).32,33 This behavior is also the same for AA-BLGwhile
with a different intensity. When the sliding direction
(dB) is along(δ1, the polarized Raman intensity is given
as I(θ)/IAB = ((a� b)2)/(8) cos 4θþ (a2� b2� d2)/(2) cos
2θ þ I0 (a,b, and d are given in Table 1, and I0 is a

TABLE 1. Calculated Raman Tensors for Various Sliding Vectors (dB)a

dB G Raman tensors, Rν (ν = 1,2)

0 D3d
Eg

c 0
0 � c

 !
Eg

0 d
d 0

 !
c = �d = 1.00

�δB1 D6h
E2g

c 0
0 � c

 !
E2g

0 d
d 0

 !
c = d = 1.11

1/2δB1 D2h
Ag

a 0
0 b

 !
B1g

0 d
d 0

 !
a = þ1.07, b = �0.88, d = �0.97

�3/4δB1 C2h
Ag

a 0
0 b

 !
Ag

0 d
d 0

 !
a = þ1.09, b = �1.13, d = �1.11

�1/2δB1 a = þ0.95, b = �0.98, d = �1.07
�1/4δB1 a = þ0.91, b = �0.90, d = �1.00
þ1/4δB1 a = þ0.95, b = �0.91, d = �0.96
þ1/3δBM a = þ0.99, b = �0.92, d = �1.01

þ1/6δBM Ci
Ag

a c
c b

 !
Ag

a0 c0
c0 b0

 !
a = �0.91, b = þ0.88, c = �0.39, a0 = �0.33, b0 = þ0.32, c0 = þ 0.87

a G is the Schoenflies notation of the point-group symmetry for each sliding geometry. Here, δBM = δB1 � δB3. The components of all Raman tensors expressed in the
vibrational symmetry group notations are normalized to the AB-BLG Raman tensor.

Figure 3. Polarization dependence of the Raman G-band
intensity in BLGwith a sliding along (a)þδB1, (b)�δB1, and (c)
þ(δB1�δB3) directions. Thepanels in the left show the Raman
intensity normalized to that of AB-BLG as a function of
polarization angle (θ), and small rectangular panels on the
right show corresponding polar plots.
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constant). I(θ) has an elliptic shape for a ≈ b or
quadrupolar form otherwise, as shown in Figure 3.
When dB deviates from the direction of (δ1, the
polarized intensity tends to rotate, as shown in
Figure 3c. In case the overall shape of the polarized
intensity looks similar, its magnitude has a strong
dependence on the sliding size (Figure 3b).

CONCLUSIONS

In conclusion, we have shown theoretically that tiny
sliding of the layers in BLGs can induce anomalous
splitting of the optical phonon that changes the

spectroscopic features significantly. We have shown
that the frequencies of the degenerate in-phase optical
phonons (Eg mode) are hardly changed irrespective of
sliding distance and direction. On the other hand, the
polarization-dependent Raman intensity associated
with the Eg mode is modified strongly so that the
sub-angstrom misalignment between two graphene
layers can be resolved by spectroscopic methods. We
expect that this study will provide essential informa-
tion for spectroscopic measurements and for linking
local atomic structures to novel electronic properties of
stacked 2D atomic crystals.

THEORETICAL METHODS
We calculated electronic structures and phonon dispersions

of the sliding BLGs using first-principles methods with a plane-
wave basis set.34 The local density approximation is adopted for
the exchange-correlation functional, and the phonon frequen-
cies are calculated using the density functional perturbation
theory.35 Computations are also repeated using the atomic
orbital basis set,36 the generalized gradient approximation
(GGA),37 and frozen phonon method36 to find almost identical
results. In calculating electronic structures and phonon disper-
sions with the atomic orbital basis set, the basis set super-
position errors were removed by including two ghost atoms in
the unit cell.38 A semiempirical correction of van der Waals
(vdW) forces is added to all our calculations following Grimme's
proposal, which is essential to obtain the correct interlayer
distance of sliding BLGs.10,39 We note that our methods accu-
rately describe the phonon frequencies of graphitic systems
when the appropriate interlayer distance is provided.21,22
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